개발자들에게 있어 머신 러닝의 복잡한 통계학은 골칫거리다. 주어진 문제를 최적화하는 머신 러닝 모델을 구축하려면 통계 지식이 필요하다. 어떤 머신 러닝 전문가라도 통계와 수학에 관한 해박한 지식을 갖고 있어야만 머신 러닝 문제를 효율적으로 파악하고 해결할 수 있다. 이 책은 통계와 머신 러닝의 기본을 살펴봄으로써 머신 러닝으로 문제를 해결할 때 전체적인 시각을 가질 수 있게 해준다. 책에서는 다양한 분야에 걸쳐 빈번하게 사용되는 알고리즘을 살펴보고, 이를 위해 R과 파이썬 프로그래밍으로 scikit-learn, e1071, randomForest, c50, xgboost 같은 라이브러리를 다룬다. 또한 케라스 소프트웨어를 활용해 딥러닝의 기초를 알아보고 순수 파이썬 언어를 사용해 강화학습을 개괄적으로 알아본다.