알라딘

헤더배너
상품평점 help

분류

이름:전철욱

최근작
2016년 3월 <파이썬과 Jupyter Notebook 2/e>

전철욱

웹의 개방성, 파이썬의 기민성, 기계 학습의 예측성을 좋아한다. 공익을 위한 재능을 만들고자 노력 중이다. 호주에서 여우 세 마리에게 잡혀 살고 있다. 에이콘출판사의 『파이썬과 기계 학습』(2015), 『Julia 프로그래밍』(2015), 『Building Machine Learning Systems with Python 한국어판 (개정판)』(2015)과 『R을 활용한 기계 학습』(2014)을 번역했다.  

대표작
모두보기
저자의 말

<파이썬과 기계 학습> - 2015년 12월  더보기

'기계 학습을 하는 자'와 '기계 학습을 당하는 자' 피타고라스 정리 a2+b2=c2는 중고등학교 수학 시간에 배우는 기본적인 공식이다. 이 공식을 조금 변형하면 유명한 '페르마의 마지막 정리'가 된다. 여기서 보기도 싫은 수학 공식을 설명하고자 하는 것은 아니다. 다만, 수학이 매우 추상적인 사고를 할 수 있는 도구라는 점은 강조하고 싶다. 사실, 데이터를 다루는 작업도 매우 추상적인 사고 과정이다. 나의 일부를 추상화해 내가 알지 못하는 정보를 구할 수도 있다. 이를테면, 나의 유전자를 추상화함으로써 암을 예측할 수 있다. 오늘도 사물들은 인류가 세어본 적도 없는 수많은 추상화된 데이터를 쏟아낸다. 데이터는 정보를 만들고 이를 토대로 결정한다. 내가 본 영화로 새 영화를 추천받고 영화를 본다. 이 과정에는 기계 학습이 관여한다. 단순한 통계를 벗어나 고도로 추상화된 기법이 데이터를 모래의 숨은 진주로 만든다. 기계 학습은 새로운 세상을 보게 하는 망원경이자 현미경이다. 플루서의 말을 인용하자면, 컴퓨팅 환경은 '기계 학습을 하는 자'와 '기계 학습을 당하는 자'로 분류될 것이다. 미비한 시작으로 기계 학습은 다양한 분야가 융합되어 있다. 먼저, 탁월한 계산력을 활용하기 위해 컴퓨터에 명령을 내려야 한다. 두 번째는 수학이다. 대부분의 기법은 확률/통계나 선형 대수를 바탕으로 이루어져 있다. 마지막으로 데이터다. 데이터는 이 모든 것에 기본이며, 넘쳐나지만 잘 활용하면 황금 원천이 된다. 이러한 관점에서 보면, 이 책은 기계 학습을 접하는 처음 독자에게 매우 유용하다. 파이썬은 쉬울 뿐만 아니라 과학 생태계를 지원하는 언어다. 파이썬 기계 학습 라이브러리 scikit-learn은 우리가 일일이 각 기법을 구현해야 할 번거로움을 대신해준다. 이 책에서는 복잡한 수학식을 다루지 않는다. 처음 접하는 독자에게 수식을 나열하며 세부적으로 설명하지 않는다. 오히려 수식 대신 개념으로 최대한 이해하기 쉽게 설명한다. 마지막으로 데이터는 기계 학습 기법의 개념을 잘 이해할 수 있도록 쉽고 구하기도 편한 실질적인 것을 선택했다. 배경지식이 없는 독자에게 이 모든 것이 쉽지는 않을 것이다. 피타고라스 정리를 다시 생각해보자. 조금만 생각해보면 이 정리를 만족하는 a, b, c를 구할 수 있고, 관심을 좀 더 가지면 '페르마의 마지막 정리'인 an+bn≠cn(n은 3 이상)에 도전해볼 수도 있다. 이 과정에서 다양한 수학적 기법을 알게 되며 흥미로운 세상을 만날 수도 있다. 이 책이 기계 학습을 심도 있게 학습하고자 하는 독자에게 피타고라스 정리와 같은 역할을 하면 좋겠다. 각 장에서 나온 기법을 실행해보고 약간씩 변경해보면서, 기법에 대한 세부사항과 수학적 배경지식을 찾아 학습해 자신이 원하는 분야에 기계 학습을 적용하길 바란다.

가나다별 l l l l l l l l l l l l l l 기타
국내문학상수상자
국내어린이문학상수상자
해외문학상수상자
해외어린이문학상수상자