알라딘

헤더배너
상품평점 help

분류

이름:마이클 베이어 (Michael Beyeler)

최근작
2020년 10월 <OpenCV 4를 활용한 머신러닝 입문 2/e>

마이클 베이어(Michael Beyeler)

워싱턴 대학교(University of Washington)의 신경 공학 및 데이터 과학 분야 박사후 연구원(Postdoctoral Fellow)으로서 망막 보형물(생체 공학적 눈)을 이식받은 맹인 환자의 지각 경험을 향상시키고자 생체 공학 비전의 컴퓨터 이용 모델을 연구하고 있다. 이 연구는 신경 과학, 컴퓨터 공학, 컴퓨터 비전, 머신러닝의 교차점에 위치한다. 여러 오픈소스 소프트웨어 프로젝트에 적극적으로 참여하고 있으며 파이썬, C/C++, CUDA, MATLAB, 안드로이드와 관련된 전문 프로그래밍 경험을 쌓았다. 캘리포니아 대학교 어바인(Irvine) 캠퍼스에서 컴퓨터 과학 박사 학위를 받았고, 스위스 취리히 연방 공과대학교에서 생명 공학 석사 학위와 전기 공학 학사 학위를 받았다.  

대표작
모두보기
저자의 말

<OpenCV를 위한 머신 러닝> - 2017년 12월  더보기

당신을 만나게 돼서 기쁘다. 이제 우리가 머신 러닝에 관해 이야기할 때다. 머신 러닝은 더 이상 단순한 유행어는 아니다. 이메일을 보호하고, 사진 속 친구를 자동으로 태그해 지정하고, 좋아하는 영화를 예측하는 데 이르기까지 이 모두가 우리 주변에서 이뤄진다. 컴퓨터는 컴퓨터 과학의 하위 분야인 머신 러닝을 통해 과거에 수집된 데이터를 사용하고, 미래에 대해 예측하는 경험을 통해 학습을 진행할 수 있다. 이때 분석해야 할 데이터의 양은 엄청나게 많다! 현재 생산 데이터의 일일 양은 2.5엑사바이트(Exabyte, 약 10억 기가바이트gigabyte)로 추정된다. 이렇게 어마어마한 규모의 데이터가 생겨난다는 것을 믿을 수 있는가? 이는 1,000만 개의 블루레이 디스크를 채우기에 충분한 데이터일 뿐 아니라, 90년 동안의 HD 화질 비디오 분량에 해당한다. 구글, 아마존, 마이크로소프트, 페이스북 등의 회사는 이 방대한 양의 데이터를 처리하기 위해 휴대 전화에서 클라우드를 잇는 슈퍼 컴퓨터에 이르기까지 그 범위를 확대해가며 머신 러닝을 통해 이익을 얻을 수 있는 데이터 과학 플랫폼을 개발하는 데 많은 투자를 해왔다. 이는 이제 우리가 머신 러닝에 시간을 투자해야 한다는 의미다. 그리고 당신이 머신 러닝을 하고자 한다면, 이 책이 바로 원하는 답이 돼줄 수 있다. 하지만 초조해하지는 말자. 머신 러닝을 통해 이익을 얻으려면 위의 예와 같이 큰 규모로 시작할 필요가 없다. 어떠한 경우라도 시작은 작게 한다. 따라서 이 책의 첫 번째 단계는 분류 및 회귀와 같은 통계 학습의 핵심 개념을 간단하고 직관적인 예제를 통해 확인하는 것이다. 이미 머신 러닝 이론을 자세히 공부했다면, 이 책은 그 지식을 실용화하는 방법을 보여줄 것이다. 그리고 머신 러닝 분야를 완전히 새롭게 접하는 사람이라도 걱정하지는 말자. 단지 필요한 것은 배우려는 의지다. 모든 기본 개념을 다룬 후에는 의사 결정 트리(decision tree), 서포트 벡터 머신(support vector machine), 베이지안(Bayesian) 네트워크와 같은 다양한 알고리즘을 살펴보고 다른 OpenCV 기능과 결합하는 방법을 배운다. 그 과정에서 데이터를 이해하고 어떻게 완벽하게 작동하는 머신 러닝 파이프라인을 구축하는지 이해함으로써 전체 작업을 배우게 된다. 현장에서 가장 뜨거운 주제인 '딥러닝'을 시작할 준비가 될 때까지, 더 많은 머신 러닝 기술들을 학습한다. 작업에 적합한 도구를 선택하는 방법을 숙지하면서 숙련된 기술과 결합해 모든 관련 머신 러닝의 기본 지식을 파악하게 된다. 이 책을 다 읽고 나면, 기존 소스 코드를 기반으로 작성하거나 자신만의 알고리즘을 처음부터 개발해 머신 러닝 문제를 해결하는 능력을 얻게 될 것이다.

가나다별 l l l l l l l l l l l l l l 기타
국내문학상수상자
국내어린이문학상수상자
해외문학상수상자
해외어린이문학상수상자