방갈로 TCS 혁신 연구소의 '분석과 통찰' 부서에서 구조화 이미지 및 텍스트 솔루션 개발과 관련된 머신 러닝과 딥러닝 솔루션을 개발하고 있다. 분석학과 데이터 과학 분야에 폭넓은 경험을 갖고 있으며, 봄베이 IIT에서 산업공학과 오퍼레이션 리서치로 석사 학위를 받았다. 인공지능에 큰 관심을 갖고 있으며, 쉬는 날에는 차세대 기술과 혁신적 기법과 관련된 책을 즐겨 읽는다.
개발자들에게 있어 머신 러닝의 복잡한 통계학은 골칫거리다. 주어진 문제를 최적화하는 머신 러닝 모델을 구축하려면 통계 지식이 필요하다. 어떤 머신 러닝 전문가라도 통계와 수학에 관한 해박한 지식을 갖고 있어야만 머신 러닝 문제를 효율적으로 파악하고 해결할 수 있다. 이 책은 통계와 머신 러닝의 기본을 살펴봄으로써 머신 러닝으로 문제를 해결할 때 전체적인 시각을 가질 수 있게 해준다. 책에서는 다양한 분야에 걸쳐 빈번하게 사용되는 알고리즘을 살펴보고, 이를 위해 R과 파이썬 프로그래밍으로 scikit-learn, e1071, randomForest, c50, xgboost 같은 라이브러리를 다룬다. 또한 케라스 소프트웨어를 활용해 딥러닝의 기초를 알아보고 순수 파이썬 언어를 사용해 강화학습을 개괄적으로 알아본다.